Noise benefits in joint detection and estimation problems
نویسندگان
چکیده
Adding noise to inputs of some suboptimal detectors or estimators can improve their performance under certain conditions. In the literature, noise benefits have been studied for detection and estimation systems separately. In this study, noise benefits are investigated for joint detection and estimation systems. The analysis is performed under the Neyman–Pearson (NP) and Bayesian detection frameworks and according to the Bayesian estimation criterion. The maximization of the system performance is formulated as an optimization problem. The optimal additive noise is shown to have a specific form, which is derived under both NP and Bayesian detection frameworks. In addition, the proposed optimization problem is approximated as a linear programming (LP) problem, and conditions under which the performance of the system can or cannot be improved via additive noise are obtained. With an illustrative numerical example, performance comparison between the noise enhanced system and the original system is presented to support the theoretical analysis. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملOptimal and Sustainable City Size by Estimating Surplus Function for Metropolitans of Iran
By shouldering the burden of a big chunk of global production, and giving Shelter to half of the world’s population, currently cities play an important role in national economies. Benefits of agglomeration in cities have played a major role in the process of economic development of different countries, however, the expansion of urbanization has produced some problems including environmental and...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملJoint Sparse Recovery Method for Compressed Sensing with Structured Dictionary Mismatch
In traditional compressed sensing theory, the dictionary matrix is given a priori, whereas in real applications this matrix suffers from random noise and fluctuations. In this paper we consider a signal model where each column in the dictionary matrix is affected by a structured noise. This formulation is common in problems such as radar signal processing and direction-of-arrival (DOA) estimati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 118 شماره
صفحات -
تاریخ انتشار 2016